Inhibition of catalase-dependent ethanol metabolism in alcohol dehydrogenase-deficient deermice by fructose.

نویسندگان

  • J A Handler
  • B U Bradford
  • E B Glassman
  • D T Forman
  • R G Thurman
چکیده

Hepatic microsomal fractions from ADH (alcohol dehydrogenase)-negative deermice incubated with an NADPH-generating system metabolized butanol and ethanol at rates around 10 nmol/min per mg. In contrast, cytosolic catalase from ADH-negative deermouse liver oxidized ethanol, but not butanol, when incubated with an H2O2-generating system. Thus butanol is oxidized by cytochrome P-450 in microsomal fractions, but not by cytosolic catalase, in tissues from ADH-negative deermice. In perfused livers from ADH-negative deermice, rates of ethanol uptake at low concentrations of ethanol (1.5 mM) were about 60 mumol/h per g, yet butanol (1.5 mM) uptake was undetectable (less than 4 mumol/h per g). At higher concentrations of alcohol (25-30 mM), rates of ethanol uptake were about 80 mumol/h per g, whereas rates of butanol uptake were only about 9 mumol/h per g. Because rates of butanol metabolism via cytochrome P-450 in deermice were more than an order of magnitude lower than rates of ethanol uptake in livers from ADH-negative deermice, it is concluded that ethanol uptake by perfused livers from ADH-negative deermice is catalysed predominantly via catalase-H2O2. In support of this conclusion, rates of H2O2 generation, which are rate-limiting for the peroxidation of ethanol by catalase, were about 65 mumol/h per g in livers from ADH-negative deermice, values similar to rates of ethanol uptake of about 60 mumol/h per g measured under identical conditions. Rates of ethanol uptake by perfused livers from ADH-positive, but not from ADH-negative, deermice were increased by about 50% by infusion of fructose. Thus it is concluded that the stimulation of hepatic ethanol uptake by fructose is dependent on the presence of ADH. Unexpectedly, fructose decreased rates of ethanol metabolism and H2O2 generation by about 60% in perfused livers from ADH-negative deermice, probably by decreasing activation of fatty acids and thus diminishing rates of peroxisomal beta-oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of P-450ALC in microsomes from alcohol dehydrogenase-deficient deermice: contribution to ethanol elimination in vivo.

Isozyme 3a of rabbit hepatic cytochrome P-450, also termed P-450ALC, was previously isolated and characterized and was shown to be induced 3- to 5-fold by exposure to ethanol. In the present study, antibody against rabbit P-450ALC was used to identify a homologous protein in alcohol dehydrogenase-negative (ADH-) and -positive (ADH+) deermice, Peromyscus maniculatus. The antibody reacts with a s...

متن کامل

Hepatic Microsomal Ethanol-oxidizing System IN WTRO CHARACTERISTICS AND ADAPTIVE PROPERTIES IN VIVO*

A hepatic microsomal ethanol-oxidizing system is described both in men and rats. It is distinguished from alcohol dehydrogenase by its subcellular localization (cytosol for alcohol dehydrogenase, microsomes for this system), its pH optimum (physiological pH versus pH 10 to 11 for alcohol dehydrogenase), and its cofactor requirements (NADPH versus NAD+ for alcohol dehydrogenase). It also require...

متن کامل

Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo.

A hepatic microsomal ethanol-oxidizing system is described both in men and rats. It is distinguished from alcohol dehydrogenase by its subcellular localization (cytosol for alcohol dehydrogenase, microsomes for this system), its pH optimum (physiological pH versus pH 10 to 11 for alcohol dehydrogenase), and its cofactor requirements (NADPH versus NAD+ for alcohol dehydrogenase). It also require...

متن کامل

Energy metabolism of the contagious equine metritis bacterium.

The energy metabolism of the English E-CMO strain of contagious equine metritis bacterium was studied in whole cells and cell extracts. This bacterium appears to have an active Krebs cycle and probably obtains energy by oxidative phosphorylation since glycolysis and the hexose monophosphate pathways appear to be absent. These conclusions are based on the findings that [U-14C]glucose incorporati...

متن کامل

Normal testicular structure and reproductive function in deermice lacking retinol and alcohol dehydrogenase activity.

It was found that a strain of deermice (Peromyscus maniculatus), which genetically lacks liver alcohol dehydrogenase activity also displays no such activity in the testis and is devoid of the enzyme activity that converts retinol to retinal, both in liver and in the testis; nevertheless, these animals exhibit normal reproduction and testicular histology. Therefore, one must reconsider the theor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 248 2  شماره 

صفحات  -

تاریخ انتشار 1987